Multiple Smooth Support Vector Machine with FCM Clustering in Hidden Space

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Multiple Smooth Support Vector Machine with FCM Clustering in Hidden Space

A multiple smooth model is proposed by smoothing technique and piecewise technique for large scale data. Mapping the training data to the hidden space with a hidden function, the proposed model divides the original data into several subclasses by Fuzzy C Means (FCM), whose initial cluster centers are selected by samples with large density indexes; derives the smooth differentiable model by util...

متن کامل

A New Formulation for Cost-Sensitive Two Group Support Vector Machine with Multiple Error Rate

Support vector machine (SVM) is a popular classification technique which classifies data using a max-margin separator hyperplane. The normal vector and bias of the mentioned hyperplane is determined by solving a quadratic model implies that SVM training confronts by an optimization problem. Among of the extensions of SVM, cost-sensitive scheme refers to a model with multiple costs which conside...

متن کامل

Multiple Sclerosis Lesions Segmentation in Magnetic Resonance Imaging using Ensemble Support Vector Machine (ESVM)

Background: Multiple Sclerosis (MS) syndrome is a type of Immune-Mediated disorder in the central nervous system (CNS) which destroys myelin sheaths, and results in plaque (lesion) formation in the brain. From the clinical point of view, investigating and monitoring information such as position, volume, number, and changes of these plaques are integral parts of the controlling process this dise...

متن کامل

Training Support Vector Machine using Adaptive Clustering

Training support vector machines involves a huge optimization problem and many specially designed algorithms have been proposed. In this paper, we proposed an algorithm called ClusterSVM that accelerates the training process by exploiting the distributional properties of the training data, that is, the natural clustering of the training data and the overall layout of these clusters relative to ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: International Journal of Grid and Distributed Computing

سال: 2016

ISSN: 2005-4262,2005-4262

DOI: 10.14257/ijgdc.2016.9.9.12